Xxlove dating

Their highest score when using just text features was 75.5%, testing on all the tweets by each author (with a train set of 3.3 million tweets and a test set of about 418,000 tweets). (2012) used SVMlight to classify gender on Nigerian twitter accounts, with tweets in English, with a minimum of 50 tweets.Their features were hash tags, token unigrams and psychometric measurements provided by the Linguistic Inquiry of Word Count software (LIWC; (Pennebaker et al. Although LIWC appears a very interesting addition, it hardly adds anything to the classification.With only token unigrams, the recognition accuracy was 80.5%, while using all features together increased this only slightly to 80.6%. (2014) examined about 9 million tweets by 14,000 Twitter users tweeting in American English.They used lexical features, and present a very good breakdown of various word types.172 For Tweets in Dutch, we first look at the official user interface for the Twi NL data set, Among other things, it shows gender and age statistics for the users producing the tweets found for user specified searches.These statistics are derived from the users profile information by way of some heuristics.Gender recognition has also already been applied to Tweets. (2010) examined various traits of authors from India tweeting in English, combining character N-grams and sociolinguistic features like manner of laughing, honorifics, and smiley use.With lexical N-grams, they reached an accuracy of 67.7%, which the combination with the sociolinguistic features increased to 72.33%. (2011) attempted to recognize gender in tweets from a whole set of languages, using word and character N-grams as features for machine learning with Support Vector Machines (SVM), Naive Bayes and Balanced Winnow2.

One gets the impression that gender recognition is more sociological than linguistic, showing what women and men were blogging about back in A later study (Goswami et al.

The resource would become even more useful if we could deduce complete and correct metadata from the various available information sources, such as the provided metadata, user relations, profile photos, and the text of the tweets.

In this paper, we start modestly, by attempting to derive just the gender of the authors 1 automatically, purely on the basis of the content of their tweets, using author profiling techniques.

When using all user tweets, they reached an accuracy of 88.0%.

An interesting observation is that there is a clear class of misclassified users who have a majority of opposite gender users in their social network. When adding more information sources, such as profile fields, they reach an accuracy of 92.0%.

Leave a Reply

  1. Video chat room arabic guy x 09-Mar-2020 19:57

    Here you will meet people from Bergen to London, San Diego to Barcelona, San Francisco to Paris from Berlin to Oslo.

  2. farm life dating 07-Dec-2020 16:37

    At the time, David explained his and Elton's decision to get fully married: "We don't feel the need to take an extra step legally.

  3. 100 love share with friends dating 01-Apr-2020 10:01

    Move your cursor to the bottom of the shadow and you will see another cam icon.